(-4x^2+12x)/(x^3-4x^2+3x)

Simple and best practice solution for (-4x^2+12x)/(x^3-4x^2+3x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-4x^2+12x)/(x^3-4x^2+3x) equation:


D( x )

x^3-(4*x^2)+3*x = 0

x^3-(4*x^2)+3*x = 0

x^3-(4*x^2)+3*x = 0

x^3-4*x^2+3*x = 0

x^3-4*x^2+3*x = 0

x*(x^2-4*x+3) = 0

x^2-4*x+3 = 0

DELTA = (-4)^2-(1*3*4)

DELTA = 4

DELTA > 0

x = (4^(1/2)+4)/(1*2) or x = (4-4^(1/2))/(1*2)

x = 3 or x = 1

x = 0

x = 0

x in (-oo:0) U (0:1) U (1:3) U (3:+oo)

(12*x-4*x^2)/(x^3-(4*x^2)+3*x) = 0

(12*x-4*x^2)/(x^3-4*x^2+3*x) = 0

12*x-4*x^2 = 0

4*x*(3-x) = 0

3-x = 0 // - 3

-x = -3 // * -1

x = 3

4*x*(x-3) = 0

x^3-4*x^2+3*x = 0

x*(x^2-4*x+3) = 0

x^2-4*x+3 = 0

DELTA = (-4)^2-(1*3*4)

DELTA = 4

DELTA > 0

x = (4^(1/2)+4)/(1*2) or x = (4-4^(1/2))/(1*2)

x = 3 or x = 1

x*(x-1)*(x-3) = 0

(4*x*(x-3))/(x*(x-1)*(x-3)) = 0

( 4*x )

4*x = 0 // : 4

x = 0

( x-3 )

x-3 = 0 // + 3

x = 3

x in { 0}

x in { 3}

x belongs to the empty set

See similar equations:

| 6a+17=17 | | 4x-(3x+9)=-4 | | -2(y+7)=-9y+42 | | 8m-2=10 | | -8w-33=7(w+6) | | (2u+6)(-(2u+3))=0 | | 0=(2x+1)(x-4) | | 13=5+x/8 | | 2u+4(u-4)=-34 | | I+3.5=10 | | 2(v-472)=448 | | inx=4.1 | | 10=-3w+8(w+5) | | (n-1.8)=2n+1 | | 18.87=2r*3.14 | | 6g=27 | | -2x+2=-7x+17 | | 5(12-m)= | | 2c+1=22 | | 10=2+23t-16t^2 | | 5v+6=9v+30 | | 5(y-2)=6y-6 | | -71=3x+4x-29 | | (n-9)*9=63 | | 31(j+3)=837 | | (k+1)-0.3=6.2 | | y=2x+1plot | | 12x=8x+12 | | P(x)=-x^2+3x+8 | | 1.3*(10-5)=g | | 3w+7=10 | | 6x+3=(x-24) |

Equations solver categories